

Mining and Metallurgical Institute named after O.A. Baikonurov «Mine Surveying and Geodesy» department

EDUCATIONAL PROGRAM 7M07306 - « Geospatial Digital Engineering »

Education Area code and classification: 7M07 Engineering Manufacturing and Civil engineering Training area code and classification: 7M073 Architecture and Civil engineering Group of educational programs: M123 Geodesy NQF level: 7 ORC level: 7 Duration of training: 2 years Amount of credits: 120

Educational program 7M07306 «Geospatial digital engineering» was approved at a meeting of the Academic Council of KazNRTU named after. K.I. Satpaeva. Protocol № 13 of "28" 04 2022

Considered and recommended for approval at a meeting of the Educational and Methodological Council of KazNRTU named after. K.I. Satpaeva. Protocol № 13 of "28" 04 2022

Educational Program 7M07306 «Geospatial Digital Engineering» developed by the academic committee in the direction "7M073 Architecture and Civil engineering"

Legr

Full name	Academic degree / academic title	Position	Place of work	Signature -
Chairman of the Ac	ademic Com	mittee:		
Kochetova M.A.		director	«Leica Geosystems Kazakhastan»	Sil-
Academic staff:				
Orynbassarova E.O.	Doctor PhD	head of department	SU	Out
Nukarbekova Zh.M.	m.t.s.	Senior Lecturer	SU	Juit
Employers:		1		1
Alpysbay M.	m.t.s.	head of department	RSE ON PCV "NATIONAL CENTER FOR GEODESY OF SPATIAL INFORMATION	I llag
Narbaev M.M.		director	TOO "ALIGeo"	Jeepf
Students	.9r		0 ¹	· y · /
Erezhep G.T.	bachelor	2nd year master's student		Eponof

Table of contents

List of abbreviations and symbols

- 1. Description of the educational program
- 2. Purpose and objectives of the educational program
- 3. Requirements for evaluating the learning outcomes of an educational program
- 4. Passport of the educational program
- 4.1. General information
- 4.2. The relationship between the attainability of the formed learning outcomes in the educational program and academic disciplines
- 5. Curriculum of the educational program

List of abbreviations and symbols

Table 1 - Used abbreviations

Abbreviation	Full name
ECTS	European Credit Transfer and Accumulation System
SU	NAO Satbayev university
MES RK	Ministry of Education and Science of the Republic of Kazakhstan
TS	Teaching staff
EP	Educational program
RO	Registrar's office
WC	Working curriculum of the EP

1. Description of the educational program

Designed for the implementation of scientific and pedagogical training of masters in the educational program "Geospatial Digital Engineering" at Satbayev University and developed within the framework of the direction "Geospatial Digital Engineering"

2. The purpose and objectives of the educational program

Goal EP: the purpose of the program is to train highly qualified scientific, technical and engineering personnel in the field of geodesy, geo informatics, geospatial digital technologies.

Tasks EP:

Task 1: The readiness of specialists for research and design work in the field of geodesy, cartography, geo informatics, mine surveying and land management, including in related areas related to the choice of the necessary research methods, modification of existing and development of new methods based on the objectives of a particular study.

Task 2: Readiness of specialists for production and technological activities that ensure the introduction of new digital developments at the local level

Task 3: The readiness of specialists to search and receive new information necessary to solve professional problems in the field of knowledge integration in relation to their field of activity, to actively participate in the activities of an enterprise or organization.

Task 4: The readiness of specialists for scientific, informational, ideological and problematic communications in a professional environment and in an audience of non-specialists with a clear and deep justification of their position, to engage in organizational, managerial and service activities, to be aware of the responsibility for making their professional decisions.

Task 5: The readiness of specialists for self-learning and continuous professional development during the entire period of scientific or advanced training during the entire period of scientific or professional activity.

3. Requirements for the evaluation of learning outcomes of the educational program

Learning outcomes include knowledge, skills and competencies and are defined both for the educational program as a whole and for its individual modules, disciplines or tasks.

The main task at this stage is to select assessment methods and tools for all types of control, with the help of which it is possible to most effectively assess the achievement of planned learning outcomes at the discipline level.

4. Passport of the educational program

4.1 General information

N₂	Field name	Note
1	Code and classification of the field of education	7M07 Engineering, manufacturing and Civil engineering
2	Code and classification of areas of study	7M073 Architecture and civil engineering
3	Group of educational programs	M123 Geodesy
4	Name of the educational program	7M07306 Geospatial Digital Engineering
5	Brief description of the educational program	It is intended for the implementation of scientific and pedagogical training of masters in the educational program "Geospatial Digital Engineering" at Satbayev University and was developed as part of the direction "Geospatial Digital Engineering"
6	EP purpose	The purpose of the program is to train highly qualified scientific, technical and engineering personnel in the field of geodesy, geo informatics, geo spatial digital technologies.
7	EP type:	New EP
8	Level on NQF	7
9	Level on SQF	7
10	EP distinctive features	No
11	List of competencies of the educational program:	9
12	The formed educational outcomes:	 Be able to develop plans and programs for the organization of innovative activities at the enterprise and understand the economic efficiency using professional automated systems. Make optimal management decisions Apply the skills of control systems, means of improving production efficiency and adapting modern information technologies to automate processes Understand and apply the concepts of geospatial analysis, immersive technologies, and 3D visualization of aerospace and ground imaging techniques To gain theoretical and practical skills, to carry out professional functions in the tasks of rational production of the type and type of geodetic instruments and equipment, their control in accordance with IOS standards Conduct research and pedagogical work, improve the intellectual and general cultural level, improve the moral and physical development of one's personality in the

		competence of professional activity
		6. Be able to analyze and apply modern computer
		technologies, including Web-based GIS for creating
		database management systems, analyzing mathematical
		processing methods, the ability to take creative initiative,
		prepare applications for inventions and industrial designs
		7. Understand the trends in the development of
		digitalization technologies for geospatial data, to be
		ready to transform processes in the context of dynamic
		changes in processes in the production market, apply
		modern technologies to visualize and optimize
		production processes, manage big data in the field of
		geodesy and cartography
		8. Apply the skills to express your thoughts fluently and
		clearly in English and use them as a means of business
		communication at a professional level
		9. Master theoretical and practical skills in conducting
		geodetic surveys to solve applied and scientific problems
13	Form of study	Daytime
14	Period of study	2 years
15	Volume of credits	120
16	Languages of education	Russian, Kazakh
17	The awarded academic degree	Master
18	Developer(s) and authors:	Department MSaG

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and
academic disciplines

N₂	Name of the discipline	Brief description of the discipline	Number of	Formed learning outcomes (codes)								
			credits	LR1	LR2	LR3	LR4	LR5	LR6	LR7	LR8	LR9
	Cycle of basic disciplines											
1	T 1' 1		versity comp	onent	[1	1	1	1	1	1	
1	English	The course is designed for	5								v	
	(professional)	undergraduates of technical specialties										
		to improve and develop foreign										
		language communication skills in										
		professional and academic fields. The										
		course introduces students to the										
		general principles of professional and										
		academic intercultural oral and written										
		communication using modern										
		pedagogical technologies (round table,										
		debates, discussions, analysis of										
		professionally oriented cases, design).										
		The course ends with a final exam.										
		Undergraduates also need to study										
		independently (MIS).										
2	History and	The subject of the philosophy of	3					v				
	philosophy of science	science, the dynamics of science, the										
		specifics of science, science and										
		prescience, antiquity and the formation										
		of theoretical science, the main stages										
		of the historical development of										
		science, the features of classical										
		science, non-classical and post-non-										
		classical science, the philosophy of										
		mathematics, physics, engineering and										
		technology, the specificity of										

		engineering sciences, the ethics of									
		science, social and moral									
		responsibility of a scientist and									
		engineer									
3	Pedagogy of higher	The course is intended for	3				v				
	education	undergraduates of the scientific and									
		pedagogical magistracy of all									
		specialties. As part of the course,									
		undergraduates will master the									
		methodological and theoretical									
		foundations of higher education									
		pedagogy, learn how to use modern									
		pedagogical technologies, plan and									
		organize training and education									
		processes, master the communication									
		technologies of subject-subject									
		interaction between a teacher and a									
		master student in the educational									
		process of the university. Also									
		undergraduates will study human									
		resource management in educational									
		organizations (on the example of									
		higher education).									
4	Psychology of	The course is aimed at teaching	3	1	1		v	1	1		
-	management	undergraduates the basics of	-				•				
		management psychology. It will									
		consider the specifics of management									
		psychology, psychological patterns of									
		management activities, personality and									
		its potential in the management									
		system: motivation and performance in									
		the organization leadership and									
		leadership in modern management of									
		organizations a social group as an									
L		piganizations, a social group as all	1	1	1	1	1	1	1	1	

		object of management, the								
		psychological basis for making								
		managerial decisions, business								
		communication and managerial								
		conflicts, the psychology of								
		responsibility, creating an image as an								
		integral part of the culture of								
		communication, the psychology of								
		advertising								
		Cycl	e of basic dis	ciplines	;	1			1	
		Sele	ectable Com	onent						
5	Innovative methods	As part of the course, the	5							v
	of engineering and	undergraduate will master the								·
	geodetic works	theoretical and practical use of								
	2	innovative methods and technologies								
		for solving scientific and applied								
		problems. The main content of the								
		course contains the following sections:								
		GNSS, absolute and relative survey								
		methods, (kinematics and statics),								
		post-processing and real-time								
		processing; UAV and survey methods;								
		laser scanning and methods of their								
		shooting (VLS, MLS, NLS) when								
		performing engineering survey,								
		geodetic works.								
6	Spatial Data	As part of the study of the discipline,	5					v		
	Infrastructure	the undergraduate will master the								
		concepts of design and development of								
		spatial data infrastructure,								
		international and national standards for								
		the implementation of SDI, database								
		management systems, components of								
		compatibility and exchange of multi-								

		format data and their technical implementation in a GIS-oriented						
		The structures of data storage and their						
		The structures of data storage and their						
		management, organization of access						
7		will be studied.						
/	Mathematical	I he goal is to form the ability to apply	5			v	v	
	modeling of field	mathematical modeling methods in						
	indicators	describing the qualitative and						
		quantitative indicators of the deposit.						
		The discipline studies the basic						
		methods of mathematical modeling						
		and their application in applied mining						
		and geological sciences, the theory of						
		mathematical modeling, which allows						
		building models of deposit indicators						
		and judging their adequacy; scientific						
		approaches to modeling field						
		indicators; fundamentals of						
		mathematical thinking, the use of						
		mathematical language.						
8	Methods for the	As part of the course, the	5		v			v
	creation and	undergraduate will master the						
	development of state	principles and methodological						
	geodetic networks	approaches to the development,						
		creation, modernization and use of the						
		state geodetic network; organize the						
		search, storage, processing, analysis of						
		geodetic information from various						
		sources for the modernization of the						
		GGS, evaluate traditional and satellite						
		methods for constructing the state						
		geodetic network, classify the methods						
		of conducting geodetic measurements						

		at GGS points, consider issues related to the adjustment of geodetic networks							
		and the coordination of networks built							
		using the traditional method and							
		satellite geodesy.							
9	Organization of	The discipline studies the concept of	5				v		
	scientific research	science, its role in the world; essence							
		and organization of scientific research,							
		their types; organization of research							
		work at the university; criteria for							
		substantiating the topic of scientific							
		research, types of information sources,							
		structure of research work, content of							
10	T 1 1 /*	scientific search.	~						
10	Land exploration	The purpose of the course is to	5	v	v				
	process automation	develop sustainable skills in the use of							
	technology	basic applied software (GIS, CAD,							
		office software and software for							
		industrial and scientific problems							
		Industrial and scientific problems.	of major die	cinlino					
		Uni	versity comp	onent	3				
11	Big data in	The discipline is focused on the	5					v	
	geosciences	formation of ideas and understanding							
		about the phenomenon of Big							
		Geospatial Data, models of geospatial							
		data and technologies for searching							
		and analyzing this data; describe the							
		concept of using big data in							
		geosciences; use the basic capabilities							
		of the tool for loading and visualizing							
		big data; solve the problems of							
		processing the initial data received							
		from different sources; apply							

		intelligent data processing										
		technologies; process data; ensure data										
		security, be able to use alternative										
		tools for big data analytics										
		Cycle	e of major dis	scipline	S							
	Selectable Component											
12	Visualization and	The discipline aims to master the	5			v				v		
	processing of	methods and concept of processing										
	geospatial data	and processing of surface data (PD) as										
		a result of obtaining the results of										
		geodetic and mine surveying										
		measurements for making managerial										
		and engineering decisions and includes	3									
		possible sections: geovisualization in										
		the field of study: points of view of the	2									
		nearest disciplines; geoimage;										
		methods of attack and presentation of										
		PD; interactive approaches to										
		isosurface contouring for										
		geovisualization; multivariant										
		representation and classification;										
		interpretation of the results of the										
		analysis of the results; Modeling of										
		virtual environments ("True 3D",										
		empirical research, VR/AR)										
13	Exploration of natural	The purpose of the discipline is	5			v				v		
	resources by	mastering the modern achievements of	•									
	aerospace means	aerospace technologies and means of										
		studying natural resources by										
		undergraduates, teaching them the										
		basics of remote sensing, methods of										
		analyzing and deciphering aerial										
		photographs and space images. The										
		objectives of the discipline are to										

		reveal the main issues of remote						
		sensing methodology, to familiarize						
		with the methods of aerospace study of						
		natural and man-made geosystems, to						
		master the practical skills of						
		deciphering remote information.						
14	Monitoring of	The objectives of the course are the	5		v			v
	deformation processes	formation of practical and applied						
	of buildings and	skills for measuring: elevation marks						
	structures	of parts of buildings and structures;						
		stress state in the soil massif and						
		structures of buildings and structures;						
		horizontal movements of soil massifs						
		bounded by slopes or slopes;						
		subsidence and shifts of the surface of						
		soil massifs subject to undermining.						
15	Organization of	The discipline aims to master the	5	v				v
	topographic and	knowledge and skills in organizing						
	geodetic works	topographic and geodetic works, using						
		modern methods and techniques to						
		solve applied problems in production						
		and scientific research. The main						
		content of the discipline includes the						
		following sections: planning						
		topographic and geodetic works,						
		budgeting and calculating the costs of						
		organizing and eliminating work						
		during geodetic surveys,						
		organizational and legal forms of						
		enterprises, fixed assets of an						
		enterprise, labor productivity, the						
		basics of labor rationing.						
16	Spatial Analysis	Spatial analysis allows you to solve	5			v		
		complex location-oriented problems,						

		find patterns, evaluate trends and make						
		decisions. The tasks of the discipline						
		include the development of the theory						
		of spatial analysis, the main theoretical						
		aspects of constructing geographic						
		images and the features of solving						
		model problems, methods of spatial						
		analysis for various design stages and						
		research tasks. Master student will						
		master the role of the spatial factor;						
		prepare for research activities related						
		to the study and numerical description						
		of natural phenomena distributed in						
		space; learn how to model spatial data.						
17	Modern problems of	The course will present modern	5	v			v	
	land management and	methods and methods of land						
	cadaster	management and organization of the						
		use of a single land fund at various						
		administrative-territorial levels, at						
		enterprises and organizations in						
		various sectors of the national						
		economic complex, obtaining,						
		collecting and processing, as well as						
		the application of these methods and						
		methods in the maintenance of the						
		cadaster. The current state of land						
		management and cadastral science is						
		considered.						
18	3D Modeling of	The course is aimed at studying 3D	5			v	v	
	Objects in GIS	models used to solve scientific and						
		practical problems, the main						
		approaches to modeling geometric						
		objects, methods of 3D geo						
		information modeling, the						

		requirements for the accuracy of building 3D models, as well as solving applied problems of developing large- scale three-dimensional models of cities and objects based on the data obtained. from laser scanning, UAV, remote sensing and classical methods of geodetic surveys.						
19	Land management using WEB-GIS	The purpose of mastering the discipline "Land management with the use of WEB-GIS" with the use of WEB-GIS is to form a holistic view of land use management in modern conditions, knowledge of the scientific and theoretical foundations of land use management in the amount provided for by the curriculum and necessary for solving production and research tasks using WEB-GIS technologies	5	v		v		
20	WEB-GIS	The discipline is focused on the formation of ideas and understandings about the concepts and technical foundations of web GIS; studying the possibilities of web GIS technologies on the example of ESRI products (ArcGIS online, server) and on the example of open resources (QGIS, Mapserver, Geoserver); geospatial web services, geoportals, mashups, mobile GIS, creation of interactive online maps for solving problems in the field of geodesy, cartography, mine surveying	5			v	v	

5. Curriculum of the educational program

Discipline	stance or orscipules	Cyce	amount in	hours	aniounf	(including	control	Allocation of face-to-face training base course; and semesters			
code	· · · · ·	credits lec/lab/pr TSIS) in hours	TSIS) in hours		l co	urse	se 2 co				
CYCLEO	F BASIC DISCIPLINES (BD)							1 semester	2 semester	3 semester	4 semester
			M-1. Mpd	ule of bas	ic training (uni	versity composi-	nen()				_
NG210	English (professional)	BDUC	5	150	0/0/3	105	E	5	1		
HUM208	Management Psychology	BOUC	3	90	1/0/1	60	E		3		
HUM210	History and philosophy of science	BDUC	3	90	1/9/1	60	E		3		
HUM209	Higher school pedagogy	BD UC	3	90	1/0/1	60	E	3			
				cor	nponent of cho	ice					
1205	Elective	BD CCH	5	150	2/0/1	105	E	5			
1205	Elective	BD CCH	5	150	1/0/2 2/0/1	105	Е	5			
1207	Elective	BD CCH	5	150	1/0/2 2/0/1	105	E		5		
CYCLE O	F PROFILE DISCIPLINES (PD)		1	1.10215				Sec. 1			
	line of the second s	M-2. Mod:	le of professi	ional activ	ity (university	component, co	mponent of c	hoice)			1
AAP717	Big data in geosciences	PD*	5	150	1/0/2	105	E	5		-	-
MAP258	Organization of topographic and geodetic works	PD*	5	150	1/0/2	105	E	5			
MAP716	Spatial analysis	PD*	5	150	1/0/2	105	E		5		
MAP271	Monitoring the deformation processes of buildings and structures	PD*	5	150	1/0/2	105	Е			5	
2305	Elective	PD*	5	150	1/0/2 2/0/1	105	E			5	
2306	Elective	PD*	3	150	1/0/2 2/0/1	105	E			5	
2307	Elective	PD*	5	150	2/0/1	105	E			5	
2308	Elective	PD*	5	150	1/0/2 2/0/1	105	E			5	
				м	-3. Module R&	D					
2309	Elective	PD*	5	150	1/0/2	105	£		5		
				M-4, Pr	actice-ariented	module				(
AAP229	Pedagogical practice	BD UC	6			-			6		
AAP256	Research practice	PD, CCH	4								4
		-	1	4-5. Expe	rimental resear	ch module		-		-	
AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWM5 UC	2					2			
AAP241	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	3						3		
AAP254	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	5							5	
AAP255	Research work of a master's student, including intentship and completion of a master's thesis	RWMS UC	14								14
				M-6, Mc	dule of final at	testation		-	1		
ECA205	Preparation and defense of a mester's thesis	FA	12								12
	Total based on UNIVERSITY:							30	30	30	3
_	Number of cr	edits for the	entire period	of study				-			
	Cycles of disciplines				Credits	1					
Cycle code				aniversity tomponent (UC)	component of choice (CCH)	Total					
8D	Cycle of basic disciplines			20	15	35	2				

B.A.Zhautikov

K.B. Ry

E. O. O

10	Cycle of profile disciplines		24	25	49
	Total for theoretical training:	9	44	40	84
	RWMS				24
FA	Final attestation	12			12
	TOTAL	12	- 44	40	120

Decision of the Academic Council of Kaentu named after K.Satpayev. Protocol No 12r -28. 042022

10

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev, Protocol Na For " 26 04 20 22 _ Protocol No Jor "20 12 20 Hy.

a

Decision of the Academic Council of the Institute

Vice-Rector for Academic Affairs

Director Mining and Metallurgical Institute named after

Head of the Department " Mine surveying and geodesy"

Specialty Council representative fre